====== Nombres complexes : Module et argument ======
==== Description par l'auteur ====
//Description// : Grâce à ces exercices, on travaille les opérations et la représentation graphique des nombres complexes en forme trigonométrique ou exponentielle.
Niveau Terminale, option maths expertes.
Cette feuille rassemble des exercices issus des programmes du secondaire utiles aux étudiants entrant dans l'enseignement supérieur.
//Niveau// : U1
//Mots-clés// : Exercices du document "Nombres complexes". Les "besoins d'aide?" y renvoient
//Domaine// : mathematics, no - //Langue// : fr
//Catégorie// : feuille d'exercices - //Temps// : ??
//Auteur(s)// :
Marie-Claude David //Contact// :
//Adresse// : module=adm/sheet&+job=read&+sh=fr/U1/1152/sheet21
//Copyright// Marie-Claude David
//This work is licensed under the// GNU GPL: http://www.gnu.org/licences/gpl.html
les commentaires sur le module : [[ressources:exercices:algebra:h5_algebra_quizcomplex_en]]
les commentaires sur le module : [[ressources:exercices:algebra:h6_algebra_cplxmodarg_fr]]
les commentaires sur le module : [[ressources:exercices:algebra:h6_algebra_oefplancomplexe_fr]]
les commentaires sur le module : [[ressources:exercices:algebra:h6_algebra_syncomplexests_fr]]
les commentaires sur le module : [[ressources:exercices:algebra:u1_algebra_graphcompineq_en]]
==== Le source de la feuille ====
:H6/algebra/cplxmodarg.fr
exo=geomodarg1&confparm1=1&confparm1=2&confparm1=3&confparm1=4&qnum=1&scoredelay=&qcmlevel=1
10
1
Interprétation géométrique : module et argument
module=H6/algebra/docintrocomplex.fr&block=module&cmd=new,10,0
:H6/algebra/cplxmodarg.fr
exo=module&qnum=1&scoredelay=&qcmlevel=1
10
1
Module d'un nombre complexe
module=H6/algebra/docintrocomplex.fr&block=module&cmd=new,10,0
:H6/algebra/cplxmodarg.fr
exo=argument&confparm1=1&confparm1=2&confparm1=3&confparm1=4&qnum=1&scoredelay=&qcmlevel=1
10
1
Argument d'un nombre complexe
module=H6/algebra/docintrocomplex.fr&block=module&cmd=new,10,0
:H6/algebra/synComplexesTS.fr
exo=formetrigorem
10
1
Calculer le module et un argument
module=H6/algebra/docintrocomplex.fr&block=module&cmd=new,10,0
:H5/algebra/quizcomplex.en
exo=arggiven
10
1
Calculez \(z\) connaissant son module et son argument
module=H6/algebra/docintrocomplex.fr&block=module&cmd=new,10
:H5/algebra/quizcomplex.en
exo=module
10
1
QCM sur les propriétés des modules
module=H6/algebra/docintrocomplex.fr&block=propriete&cmd=new,10
:H5/algebra/quizcomplex.en
exo=arg0&qnum=1&qcmlevel=3&scoredelay=
10
1
QCM sur les propriétés des arguments
module=H6/algebra/docintrocomplex.fr&block=propriete&cmd=new,10
:H6/algebra/oefplancomplexe.fr
exo=affixe&qnum=1&qcmlevel=3&scoredelay=&confparm1=B&confparm2=TRI&confparm3=2
10
1
Placez sur un graphique un nombre complexe donné sous forme trigonométrique
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10
:H6/algebra/oefplancomplexe.fr
exo=affixe&qnum=1&qcmlevel=3&scoredelay=&confparm1=B&confparm2=XP&confparm3=2
10
1
Placez sur un graphique un nombre complexe donné sous forme exponentielle
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10
:H6/algebra/cplxmodarg.fr
exo=expvcart&confparm1=1&confparm1=2&confparm1=3&confparm1=4&qnum=1&scoredelay=&qcmlevel=1
10
1
Forme exponentielle -> forme algébrique
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10,0
:H6/algebra/cplxmodarg.fr
exo=cartvexp&confparm1=1&confparm1=2&confparm1=3&confparm1=4&qnum=1&scoredelay=&qcmlevel=1
10
1
Forme algébrique -> forme exponentielle
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10,0
:H6/algebra/oefplancomplexe.fr
exo=oper&qnum=1&qcmlevel=3&scoredelay=&confparm1=B&confparm2=TRI&confparm3=1
10
1
Nombre complexe sous forme trigonométrique et opérations
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10
:H6/algebra/oefplancomplexe.fr
exo=oper&qnum=1&qcmlevel=3&scoredelay=&confparm1=B&confparm2=XP&confparm3=1
10
1
Nombre complexe sous forme exponentielle et opérations
module=H6/algebra/docintrocomplex.fr&block=forme&cmd=new,10
:U1/algebra/graphcompineq.en
atype=2&style=0mod&style=0reim&repeat=4
10
1
Lieux
reconnaître une région du plan complexe décrite par des inégalités.
~~DISCUSSION~~